San Francisco, NFAPost: Datacenters are the physical infrastructure behind the veil of cloud computing. They are where cat videos and vacation photos are stored, where remote workers gather for virtual meetings and gamers converge to build worlds, race cars and blast away foes. They enable the digital transformation of businesses around the world, allowing them to quickly and securely respond to customers’ needs and manage supply chain logistics.
At the core, datacenters are intentionally nondescript warehouses packed with tens of thousands of computer servers and the equipment needed to keep the servers running and available 24 hours a day, 7 days a week. This includes machines that keep the servers at t-shirt weather temperatures, as well as batteries and generators that maintain an uninterrupted power supply even during power grid outages.
Microsoft strives to provide datacenter customers “five-nines” of service availability, which means that the datacenter is operational 99.999% of the time. To do that, datacenter operators rely in part on the batteries in what’s called the uninterruptible power supply, or UPS, to kick on the moment a power outage occurs and provide power to the servers while backup generators are fired up.
To make sure the generators are ready at a moment’s notice, Microsoft tests them periodically, and performs what are called load tests to make sure the electrical load from the servers and other datacenter equipment can be reliably transferred to the generators.
While the backup generators are used infrequently, they are critical if there is a power outage. That’s because they maintain uninterrupted power to the datacenter, and thus service to customers.
When the backup generators do run, they typically burn fossil fuel, though Microsoft has been pioneering sustainable fuel alternatives. Microsoft has committed to eliminate diesel fuel as part of the company’s pledge to be carbon negative by 2030. To meet this goal, Microsoft is exploring short-and long-term alternatives.
Hydrogen is the lightest and most abundant element in the universe. It’s long been eyed on Earth for its clean energy potential. A challenge is that while stars such as the sun consist mostly of hydrogen, on Earth hydrogen only naturally occurs in compound form with other elements – think water or hydrocarbons such as natural gas and petroleum.
The high cost and technology required to separate hydrogen from these natural compounds, store it, transport it and wring power from it at scale have limited its use. Over the past decade, that calculus has begun to change, according to Darin Painter, a vice president of sales and product management for stationary power at Plug.
The change is driven by advances across the hydrogen ecosystem coupled with a growing interest in and commitment to sustainability, he said.
For example, abundant and inexpensive wind and solar energy is enabling the cost-efficient generation of so-called green hydrogen with machines called electrolyzers. These machines operate like a fuel cell in reverse – they use energy to split water molecules into hydrogen and oxygen. If the energy used to run the electrolyzer is from renewables, then the hydrogen produced is considered green.
The hydrogen used during the Latham test was a low-carbon “blue” hydrogen obtained as a byproduct in the industrial production of chlorine and sodium hydroxide. Plug is in the process of scaling up green hydrogen production at facilities throughout the US and Europe to meet the growing demand, Painter said. Microsoft plans to use only green hydrogen in production datacenters.
At the other end of the hydrogen ecosystem, technological advances have led to denser and more efficient fuel cell stacks that combine hydrogen and oxygen to generate electricity, heat and water.
“All of that has to happen before you can get to a viable solution at scale,” Painter said. “If we would have tried to build this three-megawatt system 10 or 15 years ago, I don’t think we could have.”
Monroe and his colleagues saw this change in the calculus when they ran the numbers at the start of their hydrogen fuel cell project in 2018. On a per-watt basis, Monroe said, power produced from hydrogen fuel cells is well on the way to becoming competitive with power from other sources such as diesel generators.
To accelerate breakthroughs in clean energy solutions, the US Department of Energy announced the first Energy Earthshot – Hydrogen Shot – in June 2021, with a goal to reduce the cost of clean hydrogen by 80% to US$1 for 1 kilogram within 1 decade. A kilogram of hydrogen has roughly the same energy content as a gallon of gasoline, Monroe noted.
What’s needed, he added, is a catalyst to scale up the production of green hydrogen and fuel cells, which will drive down costs and increase adoption of the technology.
Microsoft and other players in the datacenter industry are uniquely positioned to be that catalyst, according to Joppa, who in addition to his role as chief environmental officer is Microsoft’s representative on the Hydrogen Council, a global initiative of leading energy, transport and industry companies that was formed to promote hydrogen’s role in the clean energy transition.
Microsoft’s business and sustainability needs for fuel cells and green hydrogen send a demand signal into the marketplace, Joppa noted. What’s more, if Microsoft invests in hydrogen technology and the technology works, other companies will feel more confident investing in hydrogen too, he added.
“So, if we feel confident in using these to ensure continuity of our datacenter services, that’s a big measure of faith,” Joppa said.
A robust green hydrogen economy could also help cities transition to 100% renewable energy, noted James. That’s because excess energy produced by wind and solar farms can be used to run electrolyzers, in effect storing this excess energy in hydrogen. Then, when the sun is not shining and the wind is not blowing, this green hydrogen can power fuel cells without generating any carbon emissions.
“We want to power our cloud off the sun – free clean energy,” he said. “Well, practically, how do you do that? You have to get really good at storing energy, and hydrogen is a great way to do that.”
James envisions a future where datacenters are outfitted with hydrogen fuel cells, hydrogen storage tanks and electrolyzers to convert water molecules into hydrogen with excess renewable energy. During periods of high energy demand or when the sun stops shining and the wind stops blowing, Microsoft can ramp up the fuel cells, taking the datacenter load off the grid, freeing up grid power for others to use.
The challenges of bringing a version of this vision to reality is what compels the next-generation electrical engineer Baldwin to stick with a career in the hydrogen economy, a career path, she admits, that was not top of mind before she worked on the fuel cell project.
“I’m excited about the idea of working on something that can make a difference in the world, and hydrogen has a ton of potential to be a huge game changer,” she said. “When a lot of people think of renewable energy, they think of wind turbines and solar panels, and they don’t necessarily think of hydrogen. I know I didn’t. I think that will definitely change.”